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COMPARATIVE STUDY OF DYNAMIC ANALYSIS TECHNIQUES
IN VEHICLE SIMULATION

S.H. Shin' and W.S. Yoo"

(Received February 28, 1990)

Several dynamic analysis techniques are compared with a planar vehicle model. Cartesian formulation, suspension superelement
technique, velocity transformation, and recursive formula are compared. The relation between the recursive formula and velocity
transformation is investigated. When those techniques are applied to a planar vehicle with two independent suspensions, the
efficiency of those methods was compared. The computational efficiency of the recursive formula was higher than those of other
methods for the specific planar vehicle example.

Key Words: Recursive Formula, Velocity Transformation, Suspension Superelement

1. INTRODUCTION

In response to the needs of the aerospace industry in the
mid-1960s, Hooker and Margulies(Hooker, Margulies, 1965)
analyzed a spacecraft as an open-chain linkaged rigid body
system with revolute Joints. Since then, many other methods
have been developed for the modeling of multibody systems.
The development of computer-based methods for multibody
dynamics has proceeded simultaneously in three fields:
spacecraft dynamics (Hooker, Margulies, 1965; Jerkovsky,
1978 Keat, 1984), machine dynamics (McCullough, Haug,
1985; Kim, Vanderploeg, 1986; Nikravesh, 1988) and robotics
(Hollerbach, 1980; Craig, 1986). Although their points of
view are different, there is much in common among these
three areas.

The differences among the existing methods for the
dynamic analysis of multibody systems lie in the methods
formulating the governing equations of motion, and in the
types of coordinates being employed. In the field of me
chanical systems, however, the use of Lagrange's equations
predominates. So, the differences mainly come from the
selection of coordinates.

Equation formulations using absolute (Cartesian) coordi
nates are simpler and more general than relative ones, but
requires longer simulation times due to the large number of
coordinates. It is also difficult to apply the control problem.
Relative coordinate formulations need less simulation time,
but have some restricutions in the treatment of constraint
equations. And they do not directly determine user-oriented
data, so it may be difficult to interpret the output directly. As
a compromise, some papers use velocity transformation to
increase simulation time without loss of generality (Keat,
1984; Kim, Vanderploeg, 1986).
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Since the desired motions of an end·effector in roborts are
often controlled by a set of joint torques, it is more conveniet
to derive the euqations in terms of joint variables. In order to
execute this process with real·time control, recursive for·
mulas are often used (Hollerbach, 1980; Craig, 1986). On the
other hand, the absolute coordinate system is often used to
analyze moving basebody machinery and vehicles. Using
Cartesian coordinates, for instance, it is easy to ca1cualte the
tire reaction force from the condition of the road surface and
the orientation of a vehicle in motion.

In this paper, several dynamic analysis techniques are
compared. The relation between the recursive formula and
velocity transformation is also investigated. Computer
simulations are executed with a planar vehicle model.

2_ SOME DYNAMIC ANALYSIS
TECHNIQUES

There are several techniques for the dynamic analysis of
multibody systems. But the comparison of those methods is
difficult because of their dependence on the given system. In
this paper, those techniques are compared with a planar
vehicle shown in Fig. 1, which is composed of a chassis and
two independent suspensions. If the wheel assemblies are
modeled as separate bodies, their motions are confined to the
direction which is perpendicular to the chassis. So, the de·
grees of freedom of the system shown in Fig. 1 is 5.

In this section, three methods-the Cartesian coordinate
approach, the suspension superelement technique, and
velocity transformation-are compared with the system
shown in Fig. 1.

2.1 Cartesian Coordinate Approach
(Wehage, Haug, 1981; Nikravesh, Chung, 1982)

(1) Number of Coordinates
For a free body in a plane, three coordinates are necessary

to specify its motion. To describe the configuration of the
system shown in Figs. 1, 9 coordinates are essential
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Fig. 2 Translational joint

Fig. 1 Definition of coordinate system with cartesian coordinate

(3)

longer due to increments in the matrix size. Thus, a formula
tion without kinematic constraint equations is preferred for
program efficiency.

(2) Equations of Motion
In Fig. 3, the location of the front wheel can be written as

2.2 Suspension SupereJement Technique Approach
(McCuHough, Haug, 1985, ; Jung, Yoo, 1988)

A suspension superelement is a suspension subsystem that
occurs in vehicle modeling often repeatedly in the same
vehicle model. In this case, the euqations of motion of the
system can be easily formulated using the equations of
motion with one suspension superelement.

(1) Number of Coordinates
When a translational joint is defined between the chassis

and the suspension subsystem, the configuration of the sub
system can be defined by a state variable d. In Fig. 3, a
relative coordinate dz is defined to specify the location of the
front wheel with respect to the local X B YB frame attached to
the basebody(chassis). Defining another relative coordinate
d3 for the rear wheel, the vector of coordinates for the vehicle
shown in Fig. 1 becomes.

v.

[

§,~ "1

800m .1

(l)

rZ== rB+ ABrBZ
== rd A(BSBZ+ BUzdz) (4)

where BB is the angle between the XB YB frame and the XY
frame.
The velocity of the wheel can be obtained as

where the B matrix is the derivative of the transformation
matrix A with respect to BB. The kinetic energy of the vehicle
system shown in Fig. 1 is

where rs is the vector from the XY frame to the origin of
the X B}~I frame, B5BZ is the location of the suspension attach
ment point at the chassis with respect to the X B YB frame, B Uz
is a unit vector representing the direction of the relative
motion with respective to the X B Y" frame, BrBZ is the vector
of the front wheel location defined in the X B YB frame, and A
is the transformation matrix from the X B YB fram to the XY
frame. The transformation matrix A can be written as

(6)

(5)

These 9 coordinates are dependent on each other through 4
constraint equations.

(2) Constraint Formulation
The kinematic joints in this model can be described as

algebraic constraint equations. A translational joint between
the chassis and the suspension is shown in Fig. 2. A trans
lational joint allow:; relative translation of a pair of bodies
along a common axis, but no relative rotation between the
bodies. For the translational joint shown in Fig. 2, two con
straint equations can be formulated by defining three points
on the line of translation (Nikravesh, 1988). For the vehicle
system of Figs_ 1, 4 kinemtic constraint euqations can be
formulated with 2 translational joints.

(3) Equations of Motion
The euqations of motion of a system with kinematic con

straints can be derived by the Lagrange euqation with the
Largrange multiplier technique. The complete equations of
motion for a kinematically constrained mechanical system
can be written as the mixed differential-algebraic euqation
(Nikravesh, 1988).

(2)

subject to $(Q)==O and $QQ==O.
where M==diag[MB,Mz,M3J, Mi==diag[mi,m,J,J,/ is the Car
tesian force vector. and y== -($QQ)QQ. And $Q is the
Jacobian matrix of the constraint equation $ and Cartesian
coordinates vector Q_ For the system of Fig. 1, the matrix
size of the Eq. (2) is 13 x 13.

Since the constraint equations are highly nonlinear,
Newton-Raphson or other methods are essential to solve
kinematic constraint euqations.

Moreover, the constraint equations make the size of the
equations of motion greater, and the simulation time becomes Fig. 3 Definition of coordinate system with relative coordinate
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(2) Velocity Transformation

The vector of the Cartesian velocities Qof the system can
be written as

(14)

(13)

0 0 0

0 - rB2 82U2
(12)

t= 0 0 0 0

0 - rB3 83U3
0 0 0 0 9x5

where M=diag[MB,M2,M3J, M;=diag[m;,m;,];J.

(3) Equations of Motion
Using the transformation relations of Eq.(10) and Eq. (11),

the equations of motion with Cartesian coordinates can be
converted to those of relative coordinates as(Kim, Vander
ploeg, 1986)

rrMQ=rrf
rrM(Tii+ t4)= rrf
(rrMT)ii= TT(j-Mtq)

where the notation Ii is defined by the cross product of two
vectors a and b as a x b = lib = - ba. U2 is the unit vector
representing the direction of the relative motion with respect
to the XY .frame, and rB2 and rB3 are the vectors of the front
wheel and rear wheel in the XY frame, respectively. Using
the velocity transformation matrix T of Eq. (12) and the
velocity 4, the linear and angular velocities of body 2, be
comes.

(8)[
1 0 0]

7[= 1 1 0
1 0 1

(1) Topological System Analysis
Graph theory is an effective method of identifying the

topological structure of large scale multibody dynamic
systems. The graphical representation of the vehicle model
shown in Fig. 1 and its path matrix are as follows (Wittenbur
g, 1977)

2.3 Velocity Transformation Approach
(Shin, S.H., Kim, J.Y. and Yoo, W.S., 1989)

Using the transformation operater formation by Jerkovsky
(Jerkovsky, 1978) and topological tree analysis(Wittenbur
g, 1977) in spacecrft dynamics. Kim (Kim, Vanderploeg, 1986)
developed a very efficient method. He used the essence of
both of the coordinate systems, the generality of the Car
tesian coordinate system, and the computational efficiency of
the relative coordinate system.

where me and Je are the mass and moments of inertia of the
chassis, and ms, and Js, are the mass and moments of iner-

tia of the i-th suspension. Lagrange equations of motion can
be used to derive the equations of motion using the kinetic
energy expression of Eq. (7). The detailed derivation can be
found in (Jung, Yoo, 1988).

The mechanical system superelement concept is used to
take advantage of the efficiency of relative coordinates.
However, it is only efficient in the case of the recurrence of
the same kinematic structure in a system. If there are differ
ent suspensions in the vehicle system, the derivation of the
equation of motion becomes complicated and tedious.

The time derivative Eq. (10) yields an acceleration transfor
mation equation as

The relation between the Cartesian velocities Q and the
relative velocities 4 from Eq. (3) makes the velocity transfor
mation matrix T as

The matrices T and t for the system shown in Fig. 1 are as
following;

12 0 0
0 1 0

T= 12 - Ya2 U2
0 0 0

12 - rB3 0 U3
0 1 0 9x5

The recursive formula for the dynamic analysis of robot
systems is well deveoped (Hollerbach, 1980; Craig, 1986).
But most of the research is confined to a fixed basebody with
a single tree structure, which is most common in robot
manipulators.

Bae (Bae, Haug, 1987, 1988) derived a recursive formualtion
for constrained mechanical system using variation and vector
calculus. Graphic definition of the system is used to define
computational sequences for parallel computation.

In this section, the recursive formula is obatined using the
velocity relations of the previous links and the relative joint
velocity.

Adding the force and moment relations and the basebody
motion, the recursive dynamic simulation algorithm for a
moving basebody and a multiple tree structure is derived.

3.1 Convention for Affixing Frames
A system in which a basebody is connected with many open

loop systems, such as Fig. 4, is named a tree structure. The

3. RECURSIVE FORMULA
APPROACH (Shin, Y00, 1988)

(9)

(11)

(10)

Q= T(q);/+ t(q,4)4

Q=T4
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velocity of link j,wj,can be expressed by adding the angular
velocity of link i,w"and the relative angular velocity .oj as

where .ok is the relative angular velocity between link j
and link k.

If the absolute angular velocity of a basebody is Wo, then
the absolute angular velocity of link k is

(18)

(17)

Wk= Wj+.ok
=(Wi+.oJ+.ok

The angular velocity of link k in Fig. 4 is

Fig. 4 Definition of joint axes

Y.

k

Wk=WO+~.Qj
j=l

(19)

where lIj = cjVj(L, which is zero for the revolute joint (Cj= 0)
and V j dj for the translational joint(cj=I,qj=dJ. And ru
is the distance between rj and ri as shown in Fig. 4. The
absolute velocity of link k, Vk,is

(
x

Fig. 5 Frame assignment in recursive formula

The absolute velocity of link j,11;,is

11;= Vi+Wi X ru+ lIj (20)

If the absolute velocity of a basebody is Vo, then the absolute
velocity of link k is

Vk= 11;+wj Xrjk+lIk
=( V,+Wi X ru+ lIj)+(W,+.Qj)x rjk+ 11k
= Vi+WiX(rU+ rjk) + l2j X rjk+ lIj+ 11k
= Vi+WiX rik+.ojX rjk+ (lIjt 11k) (21)

convention for affixing frames is as follows. For a basebody,
it is the same as the conventional method in the Cartesian
coordinate formulation. But for a tree, the following nota
tions are employed:

(1) The frame{i}is attached to the link i on joint i, where
the Z,-axis coincides with the joint axis i

(2) d.(q,,)is the distance (angle)from X-I to X, measur
ed along(about) Z,

(3) The frame to} is attached to the basebody and satisfies
the first joint axis condition of chain (Craig, 1986) as

k

Vk= Vo+wox rOk+ ~(,QjX rjk+ lIj)
i=l

(22)

ao= ao=O

[
0 : revolute joint

Cl = 1 : translational joint
(15)

where rOk is the distance vector from the mass center of the
basebody to the origin of the frame{k}

Equations (19) and (22) can be rewritten together as

where ao and ao are the twist angle and the length of link 0
respectively.

(4) The orientation of the last frame{ n + I} is identical
to the frame{n}. So, n+2 frames exist in a tree with n
links. The{n +I} frame is used to specify the orientation of
the end-effector (external) force.
Fig. 5 shows the frame assignments of the vehicle system.

3.2 Velocilty Relations of Links
Let

When Eq. (23) is applied to the system with the translational
joint shown in Fig. 1, V2 and W2 become

Equation (24) is the same expression as Eq. (13)from velocity
transformation. So, Eq. (23) can be simply represented as

1

_( q,j,O) : revolute joint
(qj,C}) = ,(dj,I) : translational joint

where qj is the joint variable of link j.
In Fig. 4, the relative angular velocity between link j and

link i is expressed as • k

Qk= TkO +~ Tjkqj
j=l

(24)

(25)

(16)

which is zero for the translational joint(cj=l), and Vj¢j for
the revolute joint( €j =O,qj = q,j). The absolute angular

where Tjk and TkO are the (j+ l,k) -th and the (k,ll -th ele
ments of the transformation matrix T in Eq. (12), re
spectively.
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3.3 Acceleration Relation of Links
Differentiating Eq. (25), the linear and angular acceleration

of link k can be obtained.

(26)

It can be rewritten as

V k = VB+WBX rBk+WBX YBk
k

+ ~[{Wj X (1- Cj) V;} x rjk+(1- dVjx Yjk
)=1

k

+ Wj x CjVj ] ej;+ ~{(1-d V j x rjk+ CjVj}qj (27)
j=l

k k

Wk = WB+ ~{Wj x (1- d V j} Ii j+ ~(1-d VJqj
;=1 j=l

3.4 Recursive Formula
Inserting k + I instead of k in Eq. (19) and (22), the recur

sive formula can be derived. For the angular velocity of link
k + 1. the recursive formula is

Fig. 6 Force equilibrium of a link

= nk- nk+l- rkC. X Ik+' (rkk+1 - rkC.) X (- 1k+1)

= nk- nk+1 + rkC. X (Ik+l - Ik) - rkk+1 X 1k+1

where Ik and nk are the force and moment exerted on link k
by link k-l,

Summarizing the abvove equations, the recursive inverse
dynamics formula becomes

For the k-th tree having n links

The recursive formula for the linear and angular accelera
tion can be obtained in the same way (Shin, Yoo, 1988) and
the results are

3.5 Inverse Dynamics in Robotics
Figure 6 shows the forces acting on a link. If the point of

mass center of link k is Ck, the acceleration of the mass
center is represented as

k+1
V k+l = VB-t'WBX rBk+l+ ~(QjX rjk+I+IIJ

J=l
k

= VB + WB X (rBk+ rkk+Il +~ [Qj x (rjk + rkk+l)
j=l

+ IIj] + Qk+1 X rk+lk+1 + IIk+1
k

=[VB+wBXrBk+~(QjXrjk+d] (29)
j=l

+(WB+ ±Qj)x rkk+1 + IIk+1
j=l

= V k +Wk x rkk+1 + IIkk+1

where rkC. is the distance vector from the origin of frame{k}
to the mass center of link k ,and Y kC. = V c• - V k. The resultant
force and moment acting on link k are

k+1
Wk+I=WB+ ~QJ

j=l

k

=(WB+ ~QJ+Qk+1
j=l

=Wk+Qk+1

The recursi,ve formula for the linear velocity becomes

Vk+l= Vk+Wk X rkk+l+wk X Ykk+I+Wk+1

x Ck+ I V k+1Ii k+1 + Ck+1 V k+1q k+1

Wk+I= Wk +(1- Ck+I) Vk+1 ih+1 + Wk+1

X (1- Ck+l) Vkk+1 + Ii k+1

Fk = mk Vc.

= Ik- 1k+1 + mkg

Nk = Ie.Wk + Wk X Ie.Wk

(28)

(30)

(31)

(32)

(1) Outward Iteration
Wk+1 = Wk+ (1- Ck+l) Vk+1 Ii k+1

Vk+1 = V k + Wk+1 x rkk+1 + Ck+1 Vk+1 Ii k+1

Wk+1 = Wk +(1- Ck+I) Vk+1 iik+1 + Wk+1

X (1- ck+Il Vk+1 Ii k+1

Vk+I= Vk+Wk X rkk+l+wk X rkk+l+wk+1

x Ck+1 Vk+1 Ii k+1 +Ck+1 Vk+1 q k+1

Vc•• , = V k+1+ Wk+1 x rk+ICk+1 +Wk+1 x Y k+IC•• ,

Fk+! = mk+1 Vc."

N k+1= Ie•• ,Wk+1 +Wk+! X Ic.. ,wk+' (33)

(2) Inward Iteration
Ik= 1k+1 + Fk - mkg

nk = nk+1 +N k+1+ rkC. x (Ik - 1k+1) + rkk+1 x 1k+1
rk=nIVk (34)

The derived recursive formula are very similar to the equa
tions in robotics (Craig, 1986), but they are written with
absolute components instead of local components.

3.6 Dynamics in Mechanical Systems
Equations(33) and (34) are very similar to the equations in

robotics (Craig, 1986), but these equations are applicable
only to a single tree. If the system has multiple trees, the
algorithm must be modified.

Figure 7 shows a basebody connected to m trees. rBo(k)

vector is the distance vector from frame{B}to frame{O}of the
k-th tree. In Fig. 7, IB and nB are the force and moment acting
on the mass center of the basebody, respectively. The
resultant force and moment acting on the basebody are

-n,(k)

-n,(1

Fig. 7 F.B.D. of a Basebody
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Fig. 8 Simulation algorithm of recursive dynamic analysis

the resultant force: {F,(k)},:,

the resultant moment: {N,(k)},:l

Step 7 : compute
the linear acceleration of the mass center:

the angular acceleration: {w,(k)};:,

Step 8: compute the linear accelerations of joints: {Vi(k»),:l

Step 9 : compute the accelerations of the joint variables:

{ (j,(k)};:1
for revolute joint(c=Ol,
;P"i+l==i+IVV[Wit-l-Wi-Wi+IX Ui+l¢i+I]. i+lZi+1

for translational joint (c == 1) ,
(/'+I.=:i+1 W[ Vi-rl- Vi-Wl-X rii+l-WiX (J}iX rii-<-l)

-2WiX lJi+ld'+IJ . i+IZi + 1

When the number of links in a tree without the basebody is
n,the simulation algorithm for recursive dynamic analysis is
obtained from tree analysis and basebody analysis. The flow
chart of the recursive dynamic algorithm is shown in Fig_ 8.
The detailed algorithm for the tree analysis and the basebody
analysis in the flow chart are as following;

FB==!B- f[f1(k)]+mBg'
ko:=}

NB== ns- f [n1(k)+ rBo(k) X!I(k)]
k=l

(35)

Step 10: integrate acceleration joint coordinate: {(j,(k)}:

(2) Basebody Analysis
Step I: compute the resulant force FB and the moment

NB for the basebody

Step 2: compute the linear acceleration VB and the
angular acceleration Wa for the basebody

Step :l: integrate accelerations of the basebody: VB,WB

(1) Tree Analysis
Step 1 : compute the orientations of

frame{O}w.r.t frame{B} : CR(k)
n+1

frame{i}w.r.t frame{i-l} : {r I R(k»),=1
nt-I

frame{i}w.r.t the absolute frame: {Wi(k»),=1
joint axis unit vector w.r.t the absolute frame:

Step 2: compute distance vectors
from frame{B}to frame{O} : rBo(k)

from frame{i}to frame{i + I} : {rii+1(k)};:o

from frame{i}to the mass center Ci : {ric,(k)};:1

Step 3: compute angular velocities of links: {W,(k)};:1

"Step 4: compute linear velocities of links: { l/,(k)};=1

Step 5 : from model, compute
n+1

joint force: {fi(k)}.=1
"+1

joint torque: {ni(k)}.=1

Step 6 : compute

i--}

where ,R is the :l x 3 rotation matrix of frame{i}relative to
the frame{i -l} defined with Denavit-Hartenberg notation
(Craig, 1986). When the orientation of the basebody with
respect to the X Y frame is WB, then TV; = WB~RfR.

4. COMPUTER SIMULATION

In order to analyze the transient response of the vehicle
shown in Fig. 1, the following data are used in the simulation
(Jung, Yoo, 1988)

Chassis
mass me : 1427. 25kg
moment of inertia Ie : 6917.6kg • m2

Wheel
mass ms : 118.5kg
moment of inertia Is : 1.333kg . m2

Suspension spring
spring constant: 2.764 x 105N/01 (3 times when

spring deformationl.di'l >O.15m)
damping coefficient: 1549.8N.sec/m (rebound)

4971.0N.sec/m (compression)

Tire
.radius: 0.601
spring constant: 2.82 x 105N /01
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O.

F.

0.1..•
Q)

0
0 0.1 0.2 0.3 0.4

:! 1.171

~ 1.1171

o 0.5 1.5 2 2.5

eart.'SlC'.Il

Superelelllent

V",I'X;:lty Trans.

Recutsive

3 3.5 4
Timfl! ! !lee,

Fig. 12 Vertical position of chassis

Fig. 9 Single bump profile

Table 1 Simulation time (seconds)

'T • ,lie (sec\

Fig. 10 Vertical acceleration of chassis

Fure=Kurex (pen) + Cure X (pen)

563.662
335.241
145.036
28.658

1944.90
1171. 89
593.79
163.12

Cartesian formulation
Velocity transformation
Suspension superelement
Recursive formula

~ Computer \ PC/AT Cyber 180/830
Techniques -~!

5. CONCLUSIONS

Table 1.
Using Runge-Kutta 4th order method with 0.001 integration

time step, the programs are simulated for 4 seconds both on
the Cyber 180/830 and on the PC/AT, which has an 80287
math coprocessor and 20MB of hard·disk memory. From the
results of Table 1, following points are made.

(1) The recursive formula is the most efficient method for
the vehicle model shown in Fig, 1. The recursive formula is
well suited to this type of open loop system. The frame
assignment of the recursive formula is somewhat com
plicated, however.

(2) The Cartesian coordinate formulation takes the lon
gest simulation time because of constraint equations and the
large matrix size of the differental-algebraic equation. In
order to control constraint violations, a constraint stabiliza
tion method (Nikravesh, 1988) is used.

(3) The superelement technique is an efficient method, but
it requires a tedious derivation for the equations of motion.

(4) The simulation time of the velocity transformation
technique is about one half of the Cartesian coordinates
formulation, but it still takes longer than other methods. It
may be due to T and T matrix multiplication during the
simulation process.

Superelcment

Vel<X"ity Tr.-ms.

Cartesi;m

3 3.5 4
Time (sec)

2.5

--- carte~l~.n

Supen~lffilE>,l

21.5

Fig. 11 Vertical velocity of chassis

o 0.5

3

-3

30
~.
j

20

c;

damping coefficient: 925N. sec/m
For the tire reaction force, a linear force-deformation rela
tion is used. The tire reaction force Fure is assumed

where K ure, Cure, and pen are spring constant, damping
coefficient, and penetration of the tire, respectively. The
datailed information about the vehicle model is referred to
reference (Jung, Yoo, 1988), The vehicle travels over a sin
gle bump shown in Fig. 9 with a constant speed of 4m/sec.
Since the front wheel and rear wheel completely go over the
bump after 1.5 seconds, the simulation was done unit! 4
seconds to see the complete response.

Figures 10,11,12 show the results of computer simulations
for the vehicle model shown in Fig. 1. The results of the four
methods are almost identical, but the simulation times for the
dynamic analysis technique are quite different, as shown in

In this paper, a comparative study is made of computer
oriented dynamic analysis techniques in mechanical systems,
and a recursive dynamic simulation algorithm is derived.
From the results of computer simulations using four techni
ques, the following conclusions are obtained:

(1) Using the velocity transformation matrix, which is
often used in mechanical dynamics, a recursive inverse
dynamics formula which is often used in robotics is derived.

(2) Using derived inverse dynamics, a recursive dynamic
simulation algorithm is obtained. The efficiency of the der
ived recursive formula is higher than that of other methods
for open loop vehicles.
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